
The Development of the Non-hydrostatic Unified Model 
of the Atmosphere (NUMA) 

 
Frank Giraldo 

Department of Applied Mathematics 
Naval Postgraduate School 

Monterey CA 93943 
http://faculty.nps.edu/fxgirald/projects/NUMA 

 

September 19, 2011 
Johannes Gutenberg University 

Mainz Germany 



Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number. 

1. REPORT DATE 
19 SEP 2011 2. REPORT TYPE 

3. DATES COVERED 
  00-00-2011 to 00-00-2011  

4. TITLE AND SUBTITLE 
The Development of the Non-hydrostatic Unified Model of the
Atmosphere (NUMA) 

5a. CONTRACT NUMBER 

5b. GRANT NUMBER 

5c. PROGRAM ELEMENT NUMBER 

6. AUTHOR(S) 5d. PROJECT NUMBER 

5e. TASK NUMBER 

5f. WORK UNIT NUMBER 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
Naval Postgraduate School,Department of Applied Mathematics,833
Dyer Road,Monterey,CA,93943 

8. PERFORMING ORGANIZATION
REPORT NUMBER 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 

11. SPONSOR/MONITOR’S REPORT 
NUMBER(S) 

12. DISTRIBUTION/AVAILABILITY STATEMENT 
Approved for public release; distribution unlimited 

13. SUPPLEMENTARY NOTES 

14. ABSTRACT 
 

15. SUBJECT TERMS 

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 
ABSTRACT 
Same as

Report (SAR) 

18. NUMBER
OF PAGES 

38 

19a. NAME OF
RESPONSIBLE PERSON 

a. REPORT 
unclassified 

b. ABSTRACT 
unclassified 

c. THIS PAGE 
unclassified 

Standard Form 298 (Rev. 8-98) 
Prescribed by ANSI Std Z39-18 



Collaborators 
Model Development 
•  Les Carr, Applied Math, Naval Postgraduate School 
•  Shiva Gopalakrishnan, Applied Math, Naval Postgraduate School 
•  Jim Kelly, Applied Math, Naval Postgraduate School 
•  Michal Kopera, Applied Math, Naval Postgraduate School 
•  Simone Marras, Barcelona Supercomputing Center 
•  Patrick Mugg, Applied Math, Naval Postgraduate School 

Moist Physics 
•  Jim Doyle, Naval Research Laboratory 
•  Saša Gaberšek, Naval Research Laboratory 
 
PETSc 
•  Emil Constantinescu, Argonne National Laboratory 
•  Lois McInnes, Argonne National Laboratory 
•  Barry Smith, Argonne National Laboratory 

 



Background 

Currently, in the U.S. there is a movement to construct one NWP model (NWS, 
Navy, Air Force – other partners include NASA and DOE). This National 
Board (NUOPC=National Unified Operational Prediction Capability) aims to 
develop a new model that is: 
 
1.  Highly scalable on current and future computer architectures 
2.  Global model that is valid at the meso-scale (i.e., non-hydrostatic) 
3.  Applicable to medium-range NWP and decadal time-scales 
 
 



Motivation 

Our goal is to construct numerical methods for non-hydrostatic mesoscale and  
global atmospheric models (for NWP applications). 
 
To verify our numerical methods we have built a modeling framework with the 
following capabilities: 
1.  Highly scalable on current and future computer architectures (exascale 

computing: this means CPUs and GPUs) 
2.  Flexibility to use a wide range of grids (e.g., statically and dynamically 

adaptive) 
3.  Model that is accurate, robust, and fully conservative 
 
 



Talk Summary 

1.  New models need to exploit available computers 
2.  Numerical methods in new GFD models 
3.  Desired properties of our future GFD models 
4.  NUMA Model 



Talk Summary 

1.  New models need to exploit available computers 
•  Clock-speeds no longer getting faster; vendors are just giving 

us more CPUs 
•  From Terascale to Petascale/Exascale Computing 
•  10 of Top 500 are already in the Petascale range 
•  3 of top 10 are GPU-based machines 

2.  Numerical methods in new GFD models 
3.  Desired properties of our future GFD models 
4.  NUMA Model 



Example of Linear (Perfect) Scalability 

NUMA-CG Simulation with 16 Million Grid Points 



Talk Summary 

1.  New models need to exploit available computers 
2.  Numerical methods in new GFD models 

•  Time-Integration is important (e.g., explict, fully-implicit, 
semi-implicit) 

•  Spatial Discretization methods is how we are able to take 
advantage of Parallel computers (i.e., domain decomposition 
of the physical grid) 

3.  Desired properties of our future GFD models 
4.  NUMA Model 



Time Integration 

•  Explicit methods 
•  Fully-implicit methods 
•  Implicit-Explicit (IMEX) methods 

–  Linear Multi-step Methods 
–  Multi-stage Methods 
–  Multi-rate Methods 



Multi-step/Multi-stage IMEX Methods 

•  Let’s write the governing equations 
as 

•  If we knew the linear operator L 
(containing the fastest waves in the 
system), then we could write 

•  Discretizing by a Kth order time-
integrator yields 

 

dq
dt

= S(q)

dq
dt

= S(q) ! "SI L(q){ } + "SI L(q)[ ]

qtt = q̂ + !L qtt( ) I ! "L( )qtt = q̂ Ax = b



IMEX Methods 
(Important Properties of Schur Complement) 

•  The Schur system is clearly smaller than 
the original (No Schur) system (NxN 
instead of 3Nx3N for 2D SWE). 

•  Equally important is that the Schur 
System is better conditioned than the 
original system. This means that fewer 
iterations are required by an iterative 
solver to reach convergence. 

•  Key Point: Eigenvalues of the Schur 
form lie in the region where GMRES will 
perform well. 
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Multi-Rate Methods 
 

∆t

∆x ∆x/2 ∆x/2

∆t /2 

∆t /2 

Adaptive Mesh Refinement 
(Space) 

Multi-rate Time-Integration 
(Space-Time) 



Spatial Discretization Methods 

•  Element-based Galerkin Methods 
–  Continuous Galerkin 
–  Discontinuous Galerkin 



Element-based Galerkin (EBG) Methods 
(Definition and Examples) 

•  An element is chosen to be the basic building-block of the discretization 
and then a polynomial expansion is used to represent the solution inside 
the element 



Element-based Galerkin Methods  
(N=3 Basis Function Expansion) 



•  Primitive Equations: 

•  Approximate the solution as: 

–  Interpolation O(N) 

•  Write Primitive Equations as: 

•  Weak Problem Statement: Find 

–  such that  (Integration O(2N) ) 

Spatial Discretization 

!q
!t

+" #F = S(q)

qN = ! i
i=1

MN

" qi FN = F qN( )

R(qN ) !
"qN
"t

+# $FN % SN = &

qN !"(#)$% !"

!
!e" R qN( )d#e = 0

! = " #L2 ($) :" #PN ($e )%$e{ }
! = " #H 1($) :" #PN ($e )%$e{ }

(DG) 

(CG) 

SN = S qN( )



•  Integral Form: 

•  Matrix Form: 

•  Communicator:  

•  Where each matrix is: 

 For DG: 
 

  
 For CG: 

Spatial Discretization 
!

!e" R qN( )d#e = 0

Li (q) ! M
(e)
ij

dq(e)j
dt

" D(e)
ij( )T F(e)j " S(e)i = 0
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•  Integral Form: 

•  Matrix Form: 

•  Communicator:  

•  Where each matrix is: 

 For DG: 
 

  
 For CG: 

Spatial Discretization 
!

!e" R qN( )d#e = 0

Li (q) ! M
(e)
ij

dq(e)j
dt

" D(e)
ij( )T F(e)j " S(e)i = 0

M (e)
ij = ! i"e

# ! jd"e

D(e)
ij = !" i#e

$ " jd#e

Integration O(2N) 

M!
ij = n" i!# " jd!C Li (q)( ) = Li (q) + M!

ij( )T F(*)j

C L(q)( )

C Li (q)( ) = S G(q)( )

qI = G qi
(e)( ) (i,e)!"! I



•  Integral Form: 

•  Matrix Form: 

•  Communicator:  

•  Where each matrix is: 

 For DG: 
 

  
 For CG: 

Spatial Discretization 
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Domain Decomposition: Adjacency Matrices 

CG Adjacency DG Adjacency 

Geometry CG DG 

Quadrilaterals 8 4 

Hexahedra 26 6 

Triangles ND 3 

Max number of neighbors 



Talk Summary 

1.  New models need to exploit available computers 
2.  Numerical methods in new GFD models 
3.  Desired properties of our future GFD models 

•  E.g., Conservation, Scalability, High-order Accuracy, 
Adaptivity 

4.  NUMA Model 



Desired Properties of Future GFD Models 

1.  Conservation – Conservation of Mass and Energy are absolute musts; 
what else should we conserve?  

2.  Scalability – New models must be highly scalable because we will 
continue to get more processors 

3.  High-Order Accuracy – Accuracy is important, of course, but how do we 
measure this and what order accuracy is sufficient? This question is 
coupled to the accuracy of the physics, data assimilation, etc. From the 
standpoint of scalability, high-order is good (hp methods = on-processor 
work is large but the  communication footprint is small). This is also a 
good strategy for exploiting MPI/Open MP Hybrid and CPU/GPU 
paradigms. 

4.  Adaptivity – Adaptive methods have improved tremendously in the past 
decade and it may offer an opportunity to solve problems not feasible a 
decade ago but we need to identify these applications (e.g., hurricanes, 
storm-surge modeling, clouds?). 

 



Scalability  

Total Cost Cost Per Time-step 

! !

NUMA-CG and NUMA-DG with 16 Million Grid Points 



Adaptivity  
(Müller, Behrens, Giraldo, Wirth 2011)  

 

Rising Thermal Bubble with Nonhydrostatic DG Model 
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Talk Summary 

1.  New models need to exploit available computers 
2.  Numerical methods in new GFD models 
3.  What should we aim for in our new models 
4.  NUMA Model 

•  Design Philosophy 
•  Governing Equations 
•  Grids 
•  Results 



Design Philosophy 
Unified Dynamics 
•  All limited-area models 

are nonhydrostatic.  
Resolutions of global 
models are approaching 
the nonhydrostatic limit 
(~10 km). 

•  Both limited-area and 
global models utilize the 
same equations. 

•  Engineer a common 
dynamical core 
(DyCore) for both 
models, then change 
grids and boundary 
conditions. 

 

 

•  Unified Numerics 
•  CG is more efficient for 

smooth problems at 
low processor counts. 

•   DG is more accurate 
for problems with 
sharp gradients and 
more efficient at high 
processor counts. 

•   Both EBGs utilize a 
common mathematical 
arsenal. 

•  NUMA allows the user 
to choose either CG or 
DG for the problem at 
hand. 

 

•  Unified Code 
•  Code is modular, 

with a common set 
of data structures. 

•  New time-
integrators, grids, 
basis functions, 
physics, etc. may 
be swapped in and 
out with ease. 

•  Code is portable: 
Successfully 
installed on Apple, 
Sun, Cray, and 
IBM. 



 
Governing Equations 

(Unified Global/Mesoscale Equations) 
 
!!
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+" • !u( ) = 0
!u
!t

+ u •"u + 1
!
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Beginning with the Equations: 

!(x, y, z, t) = !0 (x, y, z)+ ! '(x, y, z, t)
" (x, y, z, t) ="0 (x, y, z)+" '(x, y, z, t)
P(x, y, z, t) = P0 (x, y, z)+ P '(x, y, z, t)

We introduce the General Splitting: 



 
Governing Equations  

(Unified Global/Mesoscale Equations) 
 

The Reference Fields satisfy certain conditions, e.g.,: 

The following General Equations satisfy such conditions: 

r̂ !"P0 = !!0g
1
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!! '
!t
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Grids 
Mesoscale Modeling Mode Global Modeling Mode 

(Cubed-Sphere) 

Global Modeling Mode 
(Icosahedral) 

Telescoping Grid ITCZ Grid 



Results: Mesoscale Mode  
(3D Linear Hydrostatic Isolated Mountain)  

•  Flow of U=20 m/s in an isothermal atmosphere. 
•  LH Mountain: Solid of revolution of Witch of Agnesi: Mountain height = 1 m 
with  radius 10 km. 
•  Absorbing (sponge) boundary condition implemented on lateral and top 
boundaries. 

Grid  Geometry  



3D Linear Hydrostatic Isolated Mountain  
(T=1 hour) 
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3D Linear Hydrostatic Isolated Mountain  
(T=1 hour) 
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Results: Mesoscale Mode 
(Balance Initial State and Baroclinic Instability)  

Balanced Initial State 
(Hydrostatically and 
Geostrophically 
balanced) 
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Results: Global Mode  
(Planetary Acoustic Wave Propagation) 

Theory=347 m/s,  
NUMA model=347 m/s, 
NICAM model = 338 m/s  



Results: Global Mode 
(Inertia-Gravity Wave Propagation N=0.01, T=48 hours)  

NUMA 

NICAM 

Theory=32 m/s,  
NUMA model=33 m/s, 
NICAM model = 33 m/s  

Grid  



NUMA2D Simple Moist Physics 
 (Mesoscale) 



A Multitude of Challenges Remain 

•  Continuous and Discontinuous Galerkin methods are good choices for 
hydrostatic and non-hydrostatic atmospheric models. 

•  The NUMA dynamical core is quite mature:  
–  3D and MPI (Kelly and Giraldo JCP 2011) . 
–  Can use either CG or DG methods. 
–  Contains a suite of  IMEX time-integrators (Giraldo et al. SISC 2011). 
–  Has been verified on a variety of limited-area and global tests. 

•  The NUMA physics is under development:  
–  Simple sub-grid scale parameterization has been added to NUMA2D 

(Gabersek et al. MWR 2011). 
–  Variational Multi-scale (VMS) method is being added to NUMA2D with 

physics for positivity of tracers (Marras et al. JCP 2011). 
–  Simple physics being added to NUMA3D along with VMS algorithm. 
 



A Multitude of Challenges Remain 

•  Future Projects: 
–  Conduct a variety of verification and validation simulations. 
–  Add IMEX methods to  NUMA-DG (currently only in NUMA-CG part). 
–  Study and Implement Multi-Rate (Patrick Mugg Thesis). 
–  Explore new Riemann solvers for NUMA-DG (Maria Lukacova) 
–  Develop adaptive methods for unified limited-area/global modeling 

simulations (work in progress by Kopera and Gopalakrishnan, NPS) 
–  NUMA is being coupled with PETSc – ANL (DoE ASCR program) has 

chosen NUMA as its flagship application. 

 


